Published in

MDPI, Pathogens, 9(10), p. 1096, 2021

DOI: 10.3390/pathogens10091096

Links

Tools

Export citation

Search in Google Scholar

Importance of Molecular Data to Identify Fungal Plant Pathogens and Guidelines for Pathogenicity Testing Based on Koch’s Postulates

This paper is made freely available by the publisher.
This paper is made freely available by the publisher.

Full text: Download

Green circle
Preprint: archiving allowed
Green circle
Postprint: archiving allowed
Green circle
Published version: archiving allowed
Data provided by SHERPA/RoMEO

Abstract

Fungi are an essential component of any ecosystem, but they can also cause mild and severe plant diseases. Plant diseases are caused by a wide array of fungal groups that affect a diverse range of hosts with different tissue specificities. Fungi were previously named based only on morphology and, in many cases, host association, which has led to superfluous species names and synonyms. Morphology-based identification represents an important method for genus level identification and molecular data are important to accurately identify species. Accurate identification of fungal pathogens is vital as the scientific name links the knowledge concerning a species including the biology, host range, distribution, and potential risk of the pathogen, which are vital for effective control measures. Thus, in the modern era, a polyphasic approach is recommended when identifying fungal pathogens. It is also important to determine if the organism is capable of causing host damage, which usually relies on the application of Koch’s postulates for fungal plant pathogens. The importance and the challenges of applying Koch’s postulates are discussed. Bradford Hill criteria, which are generally used in establishing the cause of human disease, are briefly introduced. We provide guidelines for pathogenicity testing based on the implementation of modified Koch’s postulates incorporating biological gradient, consistency, and plausibility criteria from Bradford Hill. We provide a set of protocols for fungal pathogenicity testing along with a severity score guide, which takes into consideration the depth of lesions. The application of a standard protocol for fungal pathogenicity testing and disease assessment in plants will enable inter-studies comparison, thus improving accuracy. When introducing novel plant pathogenic fungal species without proving the taxon is the causal agent using Koch’s postulates, we advise the use of the term associated with the “disease symptoms” of “the host plant”. Where possible, details of disease symptoms should be clearly articulated.