Published in

BioMed Central, Genome Biology, 1(22), 2021

DOI: 10.1186/s13059-021-02398-9

Links

Tools

Export citation

Search in Google Scholar

Genome-wide association studies identify 137 genetic loci for DNA methylation biomarkers of aging

Journal article published in 2021 by Daniel L. McCartney, Josine L. Min, Rebecca C. Richmond, Ake T. Lu, Maria K. Sobczyk, Gail Davies, Linda Broer, Xiuqing Guo, Ayoung Jeong, Jeesun Jung, Silva Kasela, Seyma Katrinli, Pei-Lun Kuo, Pamela R. Matias Garcia, Pashupati P. Mishra and other authors.
This paper is made freely available by the publisher.
This paper is made freely available by the publisher.

Full text: Download

Green circle
Preprint: archiving allowed
Green circle
Postprint: archiving allowed
Green circle
Published version: archiving allowed
Data provided by SHERPA/RoMEO

Abstract

Abstract Background Biological aging estimators derived from DNA methylation data are heritable and correlate with morbidity and mortality. Consequently, identification of genetic and environmental contributors to the variation in these measures in populations has become a major goal in the field. Results Leveraging DNA methylation and SNP data from more than 40,000 individuals, we identify 137 genome-wide significant loci, of which 113 are novel, from genome-wide association study (GWAS) meta-analyses of four epigenetic clocks and epigenetic surrogate markers for granulocyte proportions and plasminogen activator inhibitor 1 levels, respectively. We find evidence for shared genetic loci associated with the Horvath clock and expression of transcripts encoding genes linked to lipid metabolism and immune function. Notably, these loci are independent of those reported to regulate DNA methylation levels at constituent clock CpGs. A polygenic score for GrimAge acceleration showed strong associations with adiposity-related traits, educational attainment, parental longevity, and C-reactive protein levels. Conclusion This study illuminates the genetic architecture underlying epigenetic aging and its shared genetic contributions with lifestyle factors and longevity.