Published in

European Geosciences Union, Atmospheric Chemistry and Physics, 10(21), p. 7947-7961, 2021

DOI: 10.5194/acp-21-7947-2021

Links

Tools

Export citation

Search in Google Scholar

Lidar observations of cirrus clouds in Palau (7°33′ N, 134°48′ E)

This paper is made freely available by the publisher.
This paper is made freely available by the publisher.

Full text: Download

Green circle
Preprint: archiving allowed
Green circle
Postprint: archiving allowed
Green circle
Published version: archiving allowed
Data provided by SHERPA/RoMEO

Abstract

A polarization diversity elastic backscatter lidar was deployed on the equatorial island of Palau in February and March 2016 in the framework of the EU StratoClim project. The system operated unattended in the Palau Atmosferic Observatory from 15 February to 25 March 2016 during the nighttime. Each lidar profile extends from the ground to 30 km height. Here, the dataset is presented and discussed in terms of the temperature structure of the upper troposphere–lower stratosphere (UTLS) obtained from co-located radiosoundings. The cold-point tropopause (CPT) was higher than 17 km. During the campaign, several high-altitude clouds were observed, peaking approximately 3 km below the CPT. Their occurrence was associated with cold anomalies in the upper troposphere (UT). Conversely, when warm UT anomalies occurred, the presence of cirrus was restricted to a 5 km thick layer centred 5 km below the CPT. Thin and subvisible cirrus (SVC) were frequently detected close to the CPT. The particle depolarization ratios of these cirrus were generally lower than the values detected in the UT clouds. CPT cirrus occurrence showed a correlation with cold anomalies likely triggered by stratospheric wave activity penetrating the UT. The back-trajectories study revealed a thermal and convective history compatible with the convective outflow formation for most of the cirrus clouds, suggesting that the majority of air masses related to the clouds had encountered convection in the past and had reached the minimum temperature during its transport in less than 48 h before the observation. A subset of SVC with low depolarization and no sign of significative recent uplifting may have originated in situ.