Published in

MDPI, Agronomy, 5(11), p. 882, 2021

DOI: 10.3390/agronomy11050882

Links

Tools

Export citation

Search in Google Scholar

Optimizing Carbon Sequestration in Croplands: A Synthesis

This paper is made freely available by the publisher.
This paper is made freely available by the publisher.

Full text: Download

Green circle
Preprint: archiving allowed
Green circle
Postprint: archiving allowed
Green circle
Published version: archiving allowed
Data provided by SHERPA/RoMEO

Abstract

Climate change and ensuring food security for an exponentially growing global human population are the greatest challenges for future agriculture. Improved soil management practices are crucial to tackle these problems by enhancing agro-ecosystem productivity, soil fertility, and carbon sequestration. To meet Paris climate treaty pledges, soil management must address validated approaches for carbon sequestration and stabilization. The present synthesis assesses a range of current and potential future agricultural management practices (AMP) that have an effect on soil organic carbon (SOC) storage and sequestration. Through two strategies—increasing carbon inputs (e.g., enhanced primary production, organic fertilizers) and reducing SOC losses (e.g., reducing soil erosion, managing soil respiration)—AMP can either sequester, up to 714 ± 404 (compost) kg C ha−1 y−1, having no distinct impact (mineral fertilization), or even reduce SOC stocks in the topsoil (bare fallow). Overall, the carbon sequestration potential of the subsoil (>40 cm) requires further investigation. Moreover, climate change, permanent soil sealing, consumer behavior in dietary habits and waste production, as well as the socio-economic constraints of farmers (e.g., information exchange, long-term economic profitability) are important factors for implementing new AMPs. This calls for life-cycle assessments of those practices.