Published in

American Association for Cancer Research, Clinical Cancer Research, 10(27), p. 2899-2909, 2021

DOI: 10.1158/1078-0432.ccr-21-0032

Links

Tools

Export citation

Search in Google Scholar

Spectrum of Mechanisms of Resistance to Crizotinib and Lorlatinib in ROS1 Fusion–Positive Lung Cancer

This paper was not found in any repository, but could be made available legally by the author.
This paper was not found in any repository, but could be made available legally by the author.

Full text: Unavailable

Green circle
Preprint: archiving allowed
Orange circle
Postprint: archiving restricted
Red circle
Published version: archiving forbidden
Data provided by SHERPA/RoMEO

Abstract

Abstract Purpose: Current standard initial therapy for advanced, ROS proto-oncogene 1, receptor tyrosine kinase fusion (ROS1)-positive (ROS1+) non–small cell lung cancer (NSCLC) is crizotinib or entrectinib. Lorlatinib, a next-generation anaplastic lymphoma kinase/ROS1 inhibitor, recently demonstrated efficacy in ROS1+ NSCLC, including in crizotinib-pretreated patients. However, mechanisms of lorlatinib resistance in ROS1+ disease remain poorly understood. Here, we assessed mechanisms of resistance to crizotinib and lorlatinib. Experimental Design: Biopsies from patients with ROS1+ NSCLC progressing on crizotinib or lorlatinib were profiled by genetic sequencing. Results: From 55 patients, 47 post-crizotinib and 32 post-lorlatinib biopsies were assessed. Among 42 post-crizotinib and 28 post-lorlatinib biopsies analyzed at distinct timepoints, ROS1 mutations were identified in 38% and 46%, respectively. ROS1 G2032R was the most commonly occurring mutation in approximately one third of cases. Additional ROS1 mutations included D2033N (2.4%) and S1986F (2.4%) post-crizotinib and L2086F (3.6%), G2032R/L2086F (3.6%), G2032R/S1986F/L2086F (3.6%), and S1986F/L2000V (3.6%) post-lorlatinib. Structural modeling predicted ROS1L2086F causes steric interference to lorlatinib, crizotinib, and entrectinib, while it may accommodate cabozantinib. In Ba/F3 models, ROS1L2086F, ROS1G2032R/L2086F, and ROS1S1986F/G2032R/L2086F were refractory to lorlatinib but sensitive to cabozantinib. A patient with disease progression on crizotinib and lorlatinib and ROS1 L2086F received cabozantinib for nearly 11 months with disease control. Among lorlatinib-resistant biopsies, we also identified MET amplification (4%), KRAS G12C (4%), KRAS amplification (4%), NRAS mutation (4%), and MAP2K1 mutation (4%). Conclusions: ROS1 mutations mediate resistance to crizotinib and lorlatinib in more than one third of cases, underscoring the importance of developing next-generation ROS1 inhibitors with potency against these mutations, including G2032R and L2086F. Continued efforts are needed to elucidate ROS1-independent resistance mechanisms.