Published in

Hans Publishers, Astronomy & Astrophysics, (646), p. A159, 2021

DOI: 10.1051/0004-6361/202039271

Links

Tools

Export citation

Search in Google Scholar

The GAPS Programme at TNG

This paper is made freely available by the publisher.
This paper is made freely available by the publisher.

Full text: Download

Red circle
Preprint: archiving forbidden
Red circle
Postprint: archiving forbidden
Red circle
Published version: archiving forbidden
Data provided by SHERPA/RoMEO

Abstract

Context. The analysis of exoplanetary atmospheres by means of high-resolution spectroscopy is an expanding research field which provides information on the chemical composition, thermal structure, atmospheric dynamics, and orbital velocity of exoplanets. Aims. In this work, we aim to detect the light reflected by the exoplanet 51 Peg b by employing optical high-resolution spectroscopy. Methods. To detect the light reflected by the planetary dayside, we used optical High Accuracy Radial velocity Planet Searcher and High Accuracy Radial velocity Planet Searcher for the Northern hemisphere spectra taken near the superior conjunction of the planet, when the flux contrast between the planet and the star is maximum. To search for the weak planetary signal, we cross-correlated the observed spectra with a high signal-to-noise ratio stellar spectrum. Results. We homogeneously analyze the available datasets and derive a 10−5 upper limit on the planet-to-star flux contrast in the optical. Conclusions. The upper limit on the planet-to-star flux contrast of 10−5 translates into a low albedo of the planetary atmosphere (Ag ≲ 0.05−0.15 for an assumed planetary radius in the range of 1.5−0.9 RJup, as estimated from the planet’s mass).