Published in

Oxford University Press, Bioinformatics, 17(37), p. 2770-2771, 2021

DOI: 10.1093/bioinformatics/btab065

Links

Tools

Export citation

Search in Google Scholar

Well Plate Maker: a user-friendly randomized block design application to limit batch effects in large-scale biomedical studies

This paper was not found in any repository, but could be made available legally by the author.
This paper was not found in any repository, but could be made available legally by the author.

Full text: Unavailable

Green circle
Preprint: archiving allowed
Orange circle
Postprint: archiving restricted
Red circle
Published version: archiving forbidden
Data provided by SHERPA/RoMEO

Abstract

Abstract Summary Many factors can influence results in clinical research, in particular bias in the distribution of samples prior to biochemical preparation. Well Plate Maker is a user-friendly application to design single- or multiple-well plate assays. It allows multiple group experiments to be randomized and therefore helps to reduce possible batch effects. Although primarily fathered to optimize the design of clinical sample analysis by high throughput mass spectrometry (e.g. proteomics or metabolomics), it includes multiple options to limit edge-of-plate effects, to incorporate control samples or to limit cross-contamination. It thus fits the constraints of many experimental fields. Availability and implementation Well Plate Maker is implemented in R and available at Bioconductor repository (https://bioconductor.org/packages/wpm) under the open source Artistic 2.0 license. In addition to classical scripting, it can be used through a graphical user interface, developed with Shiny technology.