Published in

Portland Press, Emerging Topics in Life Sciences, 2(5), p. 261-274, 2021

DOI: 10.1042/etls20200292

Links

Tools

Export citation

Search in Google Scholar

Emerging approaches to measure photosynthesis from the leaf to the ecosystem

This paper was not found in any repository; the policy of its publisher is unknown or unclear.
This paper was not found in any repository; the policy of its publisher is unknown or unclear.

Full text: Unavailable

Red circle
Preprint: archiving forbidden
Orange circle
Postprint: archiving restricted
Red circle
Published version: archiving forbidden
Data provided by SHERPA/RoMEO

Abstract

Measuring photosynthesis is critical for quantifying and modeling leaf to regional scale productivity of managed and natural ecosystems. This review explores existing and novel advances in photosynthesis measurements that are certain to provide innovative directions in plant science research. First, we address gas exchange approaches from leaf to ecosystem scales. Leaf level gas exchange is a mature method but recent improvements to the user interface and environmental controls of commercial systems have resulted in faster and higher quality data collection. Canopy chamber and micrometeorological methods have also become more standardized tools and have an advanced understanding of ecosystem functioning under a changing environment and through long time series data coupled with community data sharing. Second, we review proximal and remote sensing approaches to measure photosynthesis, including hyperspectral reflectance- and fluorescence-based techniques. These techniques have long been used with aircraft and orbiting satellites, but lower-cost sensors and improved statistical analyses are allowing these techniques to become applicable at smaller scales to quantify changes in the underlying biochemistry of photosynthesis. Within the past decade measurements of chlorophyll fluorescence from earth-orbiting satellites have measured Solar Induced Fluorescence (SIF) enabling estimates of global ecosystem productivity. Finally, we highlight that stronger interactions of scientists across disciplines will benefit our capacity to accurately estimate productivity at regional and global scales. Applying the multiple techniques outlined in this review at scales from the leaf to the globe are likely to advance understanding of plant functioning from the organelle to the ecosystem.