Published in

Springer, Analytical and Bioanalytical Chemistry, 7(413), p. 1779-1785, 2021

DOI: 10.1007/s00216-021-03152-7

Links

Tools

Export citation

Search in Google Scholar

Stability and recovery issues concerning chondroitin sulfate disaccharide analysis

Journal article published in 2021 by Gábor Tóth ORCID, Domonkos Pál, Károly Vékey, László Drahos, Lilla Turiák
This paper was not found in any repository, but could be made available legally by the author.
This paper was not found in any repository, but could be made available legally by the author.

Full text: Unavailable

Green circle
Preprint: archiving allowed
Orange circle
Postprint: archiving restricted
Red circle
Published version: archiving forbidden
Data provided by SHERPA/RoMEO

Abstract

AbstractChondroitin sulfate (CS) is a widely studied class of glycosaminoglycans, responsible for diverse biological functions. Structural analysis of CS is generally based on disaccharide analysis. Sample preparation is a key analytical issue in this case. However, a detailed study on the stability and recovery of CS-derived species has been lacking so far. We have found that for solvent exchange, in general, vacuum evaporation (SpeedVac) is much preferable than lyophilization. Moreover, in the case of aqueous solutions, higher recovery was experienced than in solutions with high organic solvent content. Storage of the resulting disaccharide mixture in typical HPLC injection solvents is also critical; decomposition starts after 12 h at 4 °C; therefore, the mixtures should not be kept in the sample tray of an automatic injector for a long time. The study, therefore, lays down suggestions on proper sample preparation and measurement conditions for biologically derived chondroitin sulfate species.