Published in

SN Applied Sciences, 2(3), 2021

DOI: 10.1007/s42452-021-04143-0

Links

Tools

Export citation

Search in Google Scholar

Channel flow of MHD bingham fluid due to peristalsis with multiple chemical reactions: an application to blood flow through narrow arteries

This paper was not found in any repository; the policy of its publisher is unknown or unclear.
This paper was not found in any repository; the policy of its publisher is unknown or unclear.

Full text: Unavailable

Question mark in circle
Preprint: policy unknown
Question mark in circle
Postprint: policy unknown
Question mark in circle
Published version: policy unknown

Abstract

AbstractThe present analysis emphasizes the effects of variable properties on Bingham fluid under MHD peristaltic transport. Due to the impact of mechanical forces on the applied magnetic field on the conducting fluid, the fluid stream gets altered. These principle targets drug transport and control of blood flow during surgeries; hence the impact of MHD flow with convective and porous boundary conditions is considered. Further, the implications of homogeneous and heterogeneous reactions are analyzed by considering wall properties. The governing equations are turned dimensionless by appropriate similarity transformations. The series solution is obtained for temperature, velocity, and concentration by perturbation method with lubrication approach. The graphical representation of the pertinent parameters on the physiological flow quantities is depicted by applying for MATLAB 2019b program. The obtained results reveal that the rise in the magnetic parameter diminishes the velocity and temperature profiles. Further, the impact of variable viscosity slightly improves the magnitude of the trapped bolus. The homogenous and heterogeneous reaction parameters have a converse effect on the concentration distribution. Moreover, the present investigation finds its applications to perceive the complex rheological functioning of blood flow through narrow arteries.