Published in

MDPI, Molecules, 3(26), p. 527, 2021

DOI: 10.3390/molecules26030527

Links

Tools

Export citation

Search in Google Scholar

Exploring the Ability of Luminescent Metal Assemblies to Bind and Sense Anionic or Ionizable Analytes A Ru(phen)2bipy-Based Dizinc Complex for Bisphenol A (BPA) Recognition

This paper is made freely available by the publisher.
This paper is made freely available by the publisher.

Full text: Download

Green circle
Preprint: archiving allowed
Green circle
Postprint: archiving allowed
Green circle
Published version: archiving allowed
Data provided by SHERPA/RoMEO

Abstract

The synthesis of a new RuII complex, in which the metal is coordinated by two 1,10-phenanthroline ligands and a 2,2′-bipyridyl unit linked, via methylene bridges in its 4 and 4′ positions, to two 1,4,7,10-tetraazacyclododecane (cyclen) macrocycles ([Ru(phen)2L]2+) is reported. Protonation and ZnII binding by [Ru(phen)2L]2+ have been analyzed by potentiometric titration, evidencing the formation of mixed hetero-binuclear and hetero-trinuclear ZnII/RuII complexes. These complexes were tested as bis-phenol A (BPA) binders. Only the dizinc complex with [Ru(phen)2L]2+ is able to bind BPA in aqueous solution, affording a remarkably stable {Zn2[Ru(phen)2L]BPA(H−2)}4+ adduct at neutral pH, in which BPA is bound in its doubly deprotonated form to the two ZnII ions. BPA binding was found to quench the luminescence emission of the RuII(phen)2bipy core. Although the quenching effect is modest, this study demonstrates that appropriately designed dizinc complexes can be used for binding and optical sensing of BPA in water.