Published in

World Scientific Publishing, Biomedical Engineering: Applications, Basis and Communications, 02(33), p. 2150009, 2020

DOI: 10.4015/s1016237221500095

Links

Tools

Export citation

Search in Google Scholar

Emg Signal Denoising Using Adaptive Filters Through Hybrid Optimization Algorithms

Journal article published in 2020 by Bhattiprolu Nagasirisha, V. V. K. D. V. Prasad
This paper was not found in any repository, but could be made available legally by the author.
This paper was not found in any repository, but could be made available legally by the author.

Full text: Unavailable

Green circle
Preprint: archiving allowed
Green circle
Postprint: archiving allowed
Red circle
Published version: archiving forbidden
Data provided by SHERPA/RoMEO

Abstract

Electromyography (EMG) signal recording equipment is comparatively modern. Still, there are enough restrictions in detection, recording, and characterization of EMG signals because of nonlinearity in the equipment, which leads to noise components. The most commonly affecting artifacts are Power Line Interference (PLI-Noise), Baseline Wander noise (BW-Noise), and Electrocardiogram noise (ECG-Noise). Adaptive filters are advanced and effective solutions for EMG signal denoising, but the improper tuning of filter coefficients leads to noise components in the denoised EMG signal. This defect in adaptive filters triggers or motivates us to optimize the filter coefficients with existing meta-heuristics optimization algorithms. In this paper, Least Mean Squares (LMS) filter and Recursive Least Squares (RLS) adaptive filter coefficients are optimized with a new Hybrid Firefly–Particle Swarm Optimization (HFPSO) by taking the advantages and disadvantages of both the algorithms. Experiments are conducted with the proposed HFPSO and it proved better in EMG signal denoising in terms of the measured parameters like signal-to-noise ratio (SNR) in dB, maximum error (ME), mean square error (MSE), etc. In the second part of the work, the denoised EMG signal features are extracted for the diagnosis of diseases related to myopathy and neuropathy as EMG signal reflects the neuromuscular function and EMG signal examination may contribute to the diagnosis of muscle disorder linked to myopathy and neuropathy.