Published in

Oxford University Press, Monthly Notices of the Royal Astronomical Society, 1(501), p. 596-605, 2020

DOI: 10.1093/mnras/staa3615

Links

Tools

Export citation

Search in Google Scholar

New radial velocity observations of AH Her: evidence for material outside the tidal radius

This paper is made freely available by the publisher.
This paper is made freely available by the publisher.

Full text: Download

Green circle
Preprint: archiving allowed
Green circle
Postprint: archiving allowed
Green circle
Published version: archiving allowed
Data provided by SHERPA/RoMEO

Abstract

ABSTRACT Spectroscopic observations of AH Herculis during a deep quiescent state are put forward. We found the object in a rare long minima, allowing us to derive accurately the semi-amplitudes: $K_1 =121 ± \, 4$ km s−1 and K2 = 152 ± 2 km s−1 and its mass functions MWsin 3i = 0.30 ± 0.01 M⊙ and MRsin 3i = 0.24 ± 0.02 M⊙, while its binary separation is given by asin i = 1.39 ± 0.02 R⊙. The orbital period Porb = 0.25812 ± 0.00032 d was found from a power spectrum analysis of the radial velocities of the secondary star. These values are consistent with those determined by Horne, Wade & Szkody. Our observations indicate that K5 is the most likely spectral type of the secondary. We discuss why we favour the assumption that the donor in AH Her is a slightly evolved star, in which case we find that the best solution for the inclination yields i = 48° ± 2°. None the less, should the donor be a ZAMS star, we obtain that the inclination is between i = 43° and i = 44°. We also present Doppler tomography of H α and H β, and found that the emission in both lines is concentrated in a large asymmetric region at low velocities, but at an opposite position to the secondary star, outside the tidal radius and therefore at an unstable position. We also analyse the H α and H β line profiles, which show a single broad peak and compare it with the previous quiescent state study that shows a double-peaked profile, providing evidence for its transient nature.