Published in

American Astronomical Society, Astrophysical Journal, 2(903), p. 116, 2020

DOI: 10.3847/1538-4357/abb94b

Links

Tools

Export citation

Search in Google Scholar

Caltech–NRAO Stripe 82 Survey (CNSS). III. The First Radio-discovered Tidal Disruption Event, CNSS J0019+00

This paper is made freely available by the publisher.
This paper is made freely available by the publisher.

Full text: Download

Red circle
Preprint: archiving forbidden
Red circle
Postprint: archiving forbidden
Green circle
Published version: archiving allowed
Data provided by SHERPA/RoMEO

Abstract

Abstract We present the discovery of a nuclear transient with the Caltech–NRAO Stripe 82 Survey (CNSS), a dedicated radio transient survey carried out with the Karl G. Jansky Very Large Array (VLA). This transient, CNSS J001947.3+003527, exhibited a turn-on over a timescale of ≲1 yr, increasing in flux density at 3 GHz from <0.14 mJy in 2014 February to 4.4 ± 0.1 mJy in 2015 March, reaching a peak luminosity of around 2015 October. The association of CNSS J0019+00 with the nucleus (Gaia and our very-long baseline interferometry positions are consistent to within 1 pc) of a nearby S0 Seyfert galaxy at 77 Mpc, together with the radio spectral evolution, implies that this transient is most likely a tidal disruption event (TDE). Our equipartition analysis indicates the presence of a ∼15,000 km s−1 outflow, having energy ∼1049 erg. We derive the radial density profile for the circumnuclear material in the host galaxy to be proportional to R −2.5. All of these properties suggest resemblance with radio-detected thermal TDEs like ASASSN-14li and XMMSL1 J0740-85. No significant X-ray or optical emission is detected from CNSS J0019+00, although this may simply be due to the thermal emission being weak during our late-time follow-up observations. From the CNSS survey we have obtained the first unbiased measurement of the rate of radio TDEs, R(>500μJy) of about 2 × 10−3 deg−2, or equivalently a volumetric rate of about 10 Gpc−3 yr−1. This rate implies that all-sky radio surveys such as the VLA Sky Survey and those planned with ASKAP, will find many tens of radio TDEs over the next few years.