Published in

BioMed Central, Clinical Proteomics, 1(17), 2020

DOI: 10.1186/s12014-020-09299-2

Links

Tools

Export citation

Search in Google Scholar

Application of SWATH mass spectrometry in the identification of circulating proteins does not predict future weight gain in early psychosis

This paper is made freely available by the publisher.
This paper is made freely available by the publisher.

Full text: Download

Green circle
Preprint: archiving allowed
Green circle
Postprint: archiving allowed
Green circle
Published version: archiving allowed
Data provided by SHERPA/RoMEO

Abstract

AbstractWeight gain is a common consequence of treatment with antipsychotic drugs in early psychosis, leading to further morbidity and poor treatment adherence. Identifying tools that can predict weight change in early psychosis may contribute to better-individualised treatment and adherence. Recently we showed that proteomic profiling with sequential window acquisition of all theoretical fragment ion spectra (SWATH) mass spectrometry (MS) can identify individuals with pre-diabetes more likely to experience weight change in relation to lifestyle change. We investigated whether baseline proteomic profiles predicted weight change over time using data from the BeneMin clinical trial of the anti-inflammatory antibiotic, minocycline, versus placebo. Expression levels for 844 proteins were determined by SWATH proteomics in 83 people (60 men and 23 women). Hierarchical clustering analysis and principal component analysis of baseline proteomics data did not reveal distinct separation between the proteome profiles of participants in different weight change categories. However, individuals with the highest weight loss had higher Positive and Negative Syndrome Scale (PANSS) scores. Our findings imply that mode of treatment i.e. the pharmacological intervention for psychosis may be the determining factor in weight change after diagnosis, rather than predisposing proteomic dynamics.