Published in

American Association of Immunologists, The Journal of Immunology, 12(185), p. 7646-7653, 2010

DOI: 10.4049/jimmunol.1000930

Links

Tools

Export citation

Search in Google Scholar

Oligodendrocyte-specific FADD deletion protects mice from autoimmune-mediated demyelination

This paper is made freely available by the publisher.
This paper is made freely available by the publisher.

Full text: Download

Green circle
Preprint: archiving allowed
Red circle
Postprint: archiving forbidden
Red circle
Published version: archiving forbidden
Data provided by SHERPA/RoMEO

Abstract

Abstract Apoptosis of oligodendrocytes (ODCs), the myelin-producing glial cells in the CNS, plays a central role in demyelinating diseases such as multiple sclerosis and experimental autoimmune encephalomyelitis (EAE), an animal model of multiple sclerosis. To investigate the mechanism behind ODC apoptosis in EAE, we made use of conditional knockout mice lacking the adaptor protein FADD specifically in ODCs (FADDODC-KO). FADD mediates apoptosis by coupling death receptors with downstream caspase activation. In line with this, ODCs from FADDODC-KO mice were completely resistant to death receptor-induced apoptosis in vitro. In the EAE model, FADDODC-KO mice followed an ameliorated clinical disease course in comparison with control littermates. Lymphocyte and macrophage infiltration into the spinal cord parenchyma was significantly reduced, as was the extent of demyelination and proinflammatory gene expression. Collectively, our data show that FADD is critical for ODC apoptosis and the development of autoimmune demyelinating disease.