Published in

American Astronomical Society, Astronomical Journal, 4(160), p. 168, 2020

DOI: 10.3847/1538-3881/abada4

Links

Tools

Export citation

Search in Google Scholar

Astraea: Predicting Long Rotation Periods with 27 Day Light Curves

This paper is made freely available by the publisher.
This paper is made freely available by the publisher.

Full text: Download

Red circle
Preprint: archiving forbidden
Red circle
Postprint: archiving forbidden
Green circle
Published version: archiving allowed
Data provided by SHERPA/RoMEO

Abstract

Abstract The rotation periods of planet-hosting stars can be used for modeling and mitigating the impact of magnetic activity in radial velocity measurements and can help constrain the high-energy flux environment and space weather of planetary systems. Millions of stars and thousands of planet hosts are observed with the Transiting Exoplanet Survey Satellite (TESS). However, most will only be observed for 27 contiguous days in a year, making it difficult to measure rotation periods with traditional methods. This is especially problematic for field M dwarfs, which are ideal candidates for exoplanet searches, but which tend to have periods in excess of the 27 day observing baseline. We present a new tool, Astraea, for predicting long rotation periods from short-duration light curves combined with stellar parameters from Gaia DR2. Using Astraea, we can predict the rotation periods from Kepler 4 yr light curves with 13% uncertainty overall (and a 9% uncertainty for periods >30 days). By training on 27 day Kepler light-curve segments, Astraea can predict rotation periods up to 150 days with 9% uncertainty (5% for periods >30 days). After training this tool on these 27 day Kepler light-curve segments, we applied Astraea to real TESS data. For the 195 stars that were observed by both Kepler and TESS, we were able to predict the rotation periods with 55% uncertainty despite the wild differences in systematics.