Published in

Oxford University Press, Monthly Notices of the Royal Astronomical Society, 3(498), p. 3115-3124, 2020

DOI: 10.1093/mnras/staa2513

Links

Tools

Export citation

Search in Google Scholar

An eclipsing M-dwarf close to the hydrogen burning limit from NGTS

This paper is made freely available by the publisher.
This paper is made freely available by the publisher.

Full text: Download

Green circle
Preprint: archiving allowed
Green circle
Postprint: archiving allowed
Green circle
Published version: archiving allowed
Data provided by SHERPA/RoMEO

Abstract

ABSTRACT We present the discovery of NGTS J0930−18, an extreme mass ratio eclipsing M-dwarf binary system with an early M-dwarf primary and a late M-dwarf secondary close to the hydrogen burning limit. Global modelling of photometry and radial velocities reveals that the secondary component (NGTS J0930−18 B) has a mass of M* = $0.0818 ^{+0.0040}_{-0.0015}$ M⊙ and radius of R* = $0.1059 ^{+0.0023}_{-0.0021}$ R⊙, making it one of the lowest mass stars with direct mass and radius measurements. With a mass ratio of q = $0.1407 ^{+0.0065}_{-0.017}$, NGTS J0930−18 has the lowest mass ratio of any known eclipsing M-dwarf binary system, posing interesting questions for binary star formation and evolution models. The mass and radius of NGTS J0930−18 B is broadly consistent with stellar evolutionary models. NGTS J0930−18 B lies in the sparsely populated mass radius parameter space close to the substellar boundary. Precise measurements of masses and radii from single lined eclipsing binary systems of this type are vital for constraining the uncertainty in the mass–radius relationship – of importance due to the growing number of terrestrial planets being discovered around low-mass stars.