Published in

Wiley, Monthly Notice- Royal Astronomical Society -Letters-, 1(498), p. L119-L124, 2020

DOI: 10.1093/mnrasl/slaa136

Links

Tools

Export citation

Search in Google Scholar

Zodiacal Exoplanets in Time. XI. The Orbit and Radiation Environment of the Young M Dwarf-Hosted Planet K2-25b

This paper is made freely available by the publisher.
This paper is made freely available by the publisher.

Full text: Download

Red circle
Preprint: archiving forbidden
Orange circle
Postprint: archiving restricted
Red circle
Published version: archiving forbidden
Data provided by SHERPA/RoMEO

Abstract

ABSTRACT M dwarf stars are high-priority targets for searches for Earth-size and potentially Earth-like planets, but their planetary systems may form and evolve in very different circumstellar environments than those of solar-type stars. To explore the evolution of these systems, we obtained transit spectroscopy and photometry of the Neptune-size planet orbiting the ≈650-Myr-old Hyades M dwarf K2-25. An analysis of the variation in spectral line shape induced by the Doppler ‘shadow’ of the planet indicates that the planet’s orbit is closely aligned with the stellar equator ($λ =-1.7_{-3.7}^{+5.8}$ deg), and that an eccentric orbit found by previous work could arise from perturbations by another planet on a coplanar orbit. We detect no significant variation in the depth of the He i line at 1083 nm during transit. A model of atmospheric escape as an isothermal Parker wind with a solar composition shows that this non-detection is not constraining compared to escape rate predictions of ∼0.1 M⊕ Gyr−1; at such rates, at least several Gyr are required for a Neptune-like planet to evolve into a rocky super-Earth.