Published in

National Academy of Sciences, Proceedings of the National Academy of Sciences, 33(117), p. 20027-20037, 2020

DOI: 10.1073/pnas.1915646117

Links

Tools

Export citation

Search in Google Scholar

Plant richness, turnover, and evolutionary diversity track gradients of stability and ecological opportunity in a megadiversity center

This paper was not found in any repository, but could be made available legally by the author.
This paper was not found in any repository, but could be made available legally by the author.

Full text: Unavailable

Red circle
Preprint: archiving forbidden
Green circle
Postprint: archiving allowed
Red circle
Published version: archiving forbidden
Data provided by SHERPA/RoMEO

Abstract

Significance What explains global patterns of diversity—environmental history or ecology? Most studies have focused on latitudinal gradients—the decline of diversity from the tropics to the poles. A problem with this is that it conflates predictions of historical and ecological hypotheses: The productive tropics have also experienced high Cenozoic biome stability. Longitudinal diversity gradients can overcome this constraint. We use a longitudinal diversity gradient in the megadiverse Cape Floristic Region to model species and evolutionary diversity in terms of Pleistocene climate stability and ecological heterogeneity. We find that biome stability is the strongest predictor of diversity measures, and argue that stability, in conjunction with measures of ecological opportunity—other than productivity—may provide a general explanation for global diversity patterns.