Published in

Oxford University Press, Physical Therapy & Rehabilitation Journal, 11(100), p. 2023-2034, 2020

DOI: 10.1093/ptj/pzaa146

Links

Tools

Export citation

Search in Google Scholar

Multimodal Balance Training Supported by Rhythmic Auditory Stimuli in Parkinson Disease: Effects in Freezers and Nonfreezers

This paper is made freely available by the publisher.
This paper is made freely available by the publisher.

Full text: Download

Green circle
Preprint: archiving allowed
Orange circle
Postprint: archiving restricted
Red circle
Published version: archiving forbidden
Data provided by SHERPA/RoMEO

Abstract

Abstract Objective To fulfill the potential of nonpharmacological interventions for people with Parkinson disease (PD), individually tailored treatment is needed. Multimodal balance training supported by rhythmic auditory stimuli (RAS) can improve balance and gait in people with PD. The purpose of this study was to determine whether both freezers and nonfreezers benefit. Methods A secondary analysis was conducted on a large randomized controlled trial that included 154 patients with PD (Hoehn & Yahr Stages 1–3 while ON-medication) who were assigned randomly to 3 groups: (1) multimodal balance training with RAS delivered by a metronome (RAS-supported multimodal balance training); (2) regular multimodal balance training without rhythmic auditory cues; and (3) a control intervention (involving an educational program). Training was performed for 5 weeks, twice per week. The primary outcome was the Mini-BESTest score directly after the training period. Assessments were performed by a single, masked assessor at baseline, directly postintervention, and after 1-month and 6-month follow-up. Outcomes were analyzed in 1 analysis, and the results were presented separately for freezers and nonfreezers with a linear mixed model, adjusted for baseline Mini-BESTest scores, Unified Parkinson’s Disease Rating Scale scores, and levodopa equivalent dose. Results In both freezers and nonfreezers, both RAS-supported multimodal training and regular training significantly improved the Mini-BESTest scores compared with baseline scores and with the control group scores. The improvement was larger for RAS-supported training compared with regular training, for both freezers and nonfreezers. Only the RAS-supported training group retained the improvements compared with baseline measurements at 6-month follow-up, and this was true for both freezers and nonfreezers. Conclusions RAS-supported multimodal training is effective in improving balance performance in both freezers and nonfreezers. Impact Until this study, it was unknown whether both freezers and nonfreezers could benefit from multimodal balance training. With this information, clinicians who work with people with PD will be better able to apply personalized gait rehabilitation. Lay Summary Adding rhythmic auditory stimuli (RAS) to balance training is beneficial for both freezers and nonfreezers, at least in persons with mild to moderate disease stages. This RAS-supported multimodal training has good potential for a wider clinical implementation with good long-term effects.