Published in

Nature Research, Nature Communications, 1(11), 2020

DOI: 10.1038/s41467-020-16678-8

Links

Tools

Export citation

Search in Google Scholar

Coupling magnetic and plasmonic anisotropy in hybrid nanorods for mechanochromic responses

Journal article published in 2020 by Zhiwei Li ORCID, Jianbo Jin ORCID, Fan Yang, Ningning Song, Yadong Yin ORCID
This paper is made freely available by the publisher.
This paper is made freely available by the publisher.

Full text: Download

Green circle
Preprint: archiving allowed
Red circle
Postprint: archiving forbidden
Green circle
Published version: archiving allowed
Data provided by SHERPA/RoMEO

Abstract

AbstractMechanochromic response is of great importance in designing bionic robot systems and colorimetric devices. Unfortunately, compared to mimicking motions of natural creatures, fabricating mechanochromic systems with programmable colorimetric responses remains challenging. Herein, we report the development of unconventional mechanochromic films based on hybrid nanorods integrated with magnetic and plasmonic anisotropy. Magnetic-plasmonic hybrid nanorods have been synthesized through a unique space-confined seed-mediated process, which represents an open platform for preparing next-generation complex nanostructures. By coupling magnetic and plasmonic anisotropy, the plasmonic excitation of the hybrid nanorods could be collectively regulated using magnetic fields. It facilitates convenient incorporation of the hybrid nanorods into polymer films with a well-controlled orientation and enables sensitive colorimetric changes in response to linear and angular motions. The combination of unique synthesis and convenient magnetic alignment provides an advanced approach for designing programmable mechanochromic devices with the desired precision, flexibility, and scalability.