Published in

Seismological Society of America, Seismological Research Letters, 4(91), p. 2206-2217, 2020

DOI: 10.1785/0220190177

Links

Tools

Export citation

Search in Google Scholar

Toward Global Earthquake Early Warning with the MyShake Smartphone Seismic Network, Part 1: Simulation Platform and Detection Algorithm

Journal article published in 2020 by Qingkai Kong, Robert Martin-Short, Richard M. Allen
This paper was not found in any repository, but could be made available legally by the author.
This paper was not found in any repository, but could be made available legally by the author.

Full text: Unavailable

Green circle
Preprint: archiving allowed
Orange circle
Postprint: archiving restricted
Red circle
Published version: archiving forbidden
Data provided by SHERPA/RoMEO

Abstract

Abstract The MyShake project aims to build a global smartphone seismic network to facilitate large-scale earthquake early warning and other applications by leveraging the power of crowdsourcing. The MyShake mobile application first detects earthquake shaking on a single phone. The earthquake is then confirmed on the MyShake servers using a “network detection” algorithm that is activated by multiple single-phone detections. In this part one of the two article series, we present a simulation platform and a network detection algorithm to test earthquake scenarios at various locations around the world. The proposed network detection algorithm is built on the classic density-based spatial clustering of applications with noise spatial clustering algorithm, with modifications to take temporal characteristics into account and the association of new triggers. We test our network detection algorithm using real data recorded by MyShake users during the 4 January 2018 M 4.4 Berkeley and the 10 June 2016 M 5.2 Borrego Springs earthquakes to demonstrate the system’s utility. In order to test the entire detection procedure and to understand the first order performance of MyShake in various locations around the world representing different population and tectonic characteristics, we then present a software platform that can simulate earthquake triggers in hypothetical MyShake networks. Part two of this paper series explores our MyShake early warning simulation performance in selected regions around the world.