Published in

Nature Research, Scientific Reports, 1(10), 2020

DOI: 10.1038/s41598-020-64752-4

Links

Tools

Export citation

Search in Google Scholar

Eyes shut homolog (EYS) interacts with matriglycan of O-mannosyl glycans whose deficiency results in EYS mislocalization and degeneration of photoreceptors

This paper is made freely available by the publisher.
This paper is made freely available by the publisher.

Full text: Download

Green circle
Preprint: archiving allowed
Red circle
Postprint: archiving forbidden
Green circle
Published version: archiving allowed
Data provided by SHERPA/RoMEO

Abstract

AbstractMutations in eyes shut homolog (EYS), a secreted extracellular matrix protein containing multiple laminin globular (LG) domains, and in protein O-mannose β1, 2-N-acetylglucosaminyl transferase 1 (POMGnT1), an enzyme involved in O-mannosyl glycosylation, cause retinitis pigmentosa (RP), RP25 and RP76, respectively. How EYS and POMGnT1 regulate photoreceptor survival is poorly understood. Since some LG domain-containing proteins function by binding to the matriglycan moiety of O-mannosyl glycans, we hypothesized that EYS interacted with matriglycans as well. To test this hypothesis, we performed EYS Far-Western blotting assay and generated pomgnt1 mutant zebrafish. The results showed that EYS bound to matriglycans. Pomgnt1 mutation in zebrafish resulted in a loss of matriglycan, retention of synaptotagmin-1-positive EYS secretory vesicles within the outer nuclear layer, and diminished EYS protein near the connecting cilia. Photoreceptor density in 2-month old pomgnt1 mutant retina was similar to the wild-type animals but was significantly reduced at 6-months. These results indicate that EYS protein localization to the connecting cilia requires interaction with the matriglycan and that O-mannosyl glycosylation is required for photoreceptor survival in zebrafish. This study identified a novel interaction between EYS and matriglycan demonstrating that RP25 and RP76 are mechanistically linked in that O-mannosyl glycosylation controls targeting of EYS protein.