Published in

American Astronomical Society, Astrophysical Journal Letters, 1(893), p. L18, 2020

DOI: 10.3847/2041-8213/ab8566

Links

Tools

Export citation

Search in Google Scholar

Formation of Macroscale Flux Transfer Events at Mercury

This paper is made freely available by the publisher.
This paper is made freely available by the publisher.

Full text: Download

Red circle
Preprint: archiving forbidden
Red circle
Postprint: archiving forbidden
Green circle
Published version: archiving allowed
Data provided by SHERPA/RoMEO

Abstract

Abstract Flux transfer events (FTEs) are magnetic flux ropes that are produced via magnetic reconnection at the planetary magnetopause where the solar wind directly interacts with the magnetosphere. Previous observations show that FTEs with a duration of several seconds, corresponding to a spatial scale of ∼0.5–1 R M, can occur at Mercury. However, the formation of these macroscale FTEs at a small dimensional magnetopause with a radius of ∼1.5 R M remains unclear. Here, we report the observations of active magnetic reconnection events at Mercury’s magnetopause by the MESSENGER spacecraft. The reconnection process is dominated by the formation of a series of multi-scale FTEs. Ion-scale flux ropes, typically with durations of ∼1 s or less, may be produced by the tearing instability in the thin current sheet near the subsolar position. Moreover, the commonly observed macroscale FTEs consist of three to tens of successive small-scale FTEs. We propose that macroscale FTEs at Mercury are generated by the interaction and merging of multiple ion-scale flux ropes, probably through two or more steps. This is distinct from the formation of typical FTEs, mainly between a pair of X-lines, at Earth’s magnetopause. Thus, the formation and evolution of FTEs may differ among planetary magnetospheres with a vast range of scale sizes. We further conclude that Mercury’s magnetopause is a natural plasma laboratory to study flux rope dynamics and evolution for the upcoming Bepi-Colombo mission.