Published in

Bentham Science Publishers, Anti-Cancer Agents in Medicinal Chemistry, 9(20), p. 1105-1114, 2020

DOI: 10.2174/1871520620666200402080034

Links

Tools

Export citation

Search in Google Scholar

Resveratrol Counteracts Hypoxia-Induced Gastric Cancer Invasion and EMT through Hedgehog Pathway Suppression

This paper was not found in any repository, but could be made available legally by the author.
This paper was not found in any repository, but could be made available legally by the author.

Full text: Unavailable

Green circle
Preprint: archiving allowed
Orange circle
Postprint: archiving restricted
Red circle
Published version: archiving forbidden
Data provided by SHERPA/RoMEO

Abstract

Background: Gastric Cancer (GC) is one of the most malignant and lethal tumors worldwide. The hypoxic microenvironment is correlated with GC cell invasion, metastasis and Epithelial-Mesenchymal Transition (EMT). Resveratrol is a compound extracted from various plants, including grapes, berries, and some traditional Chinese medicines. Recently, the anticancer properties of resveratrol against many cancers have been reported in a range of studies. However, the exact mechanism through which resveratrol prevents GC invasion and metastasis under hypoxic conditions remains unclear. Objective: The objective of this study is to show to what extent resveratrol could inhibit the hypoxia-induced malignant biological behavior of GC. Methods: SGC-7901 cells were cultured in a consistent 3% O2 hypoxic condition or 21% O2 normal condition for 48 hours to establish an in vitro hypoxia model. Western blot and qRT-PCR were used to detect EMT markers of SGC- 7901 cells, including E-cadherin, HIF-1a, Vimentin, etc. Transwell Matrigel Invasion Assays were used to test the invasive ability of SGC-7901 cells. The siRNA targeting Gli-1 showed its role in hypoxia-induced EMT and invasion of SGC-7901 cells. Results: Resveratrol was found to significantly decrease HIF-1α protein levels induced by hypoxia in SGC-7901 cells. HIF-1α accumulation was found to promote cell proliferation, migration, and invasive capacities in addition to EMT changes through the activation of the Hedgehog pathway. These effects were found to be reversed by resveratrol. Conclusion: Therefore, these data indicate that resveratrol may serve as a potential anticancer agent for the treatment of GC, even in a hypoxic tumor microenvironment.