Published in

National Academy of Sciences, Proceedings of the National Academy of Sciences, 12(117), p. 6316-6322, 2020

DOI: 10.1073/pnas.1903721117

Links

Tools

Export citation

Search in Google Scholar

High-throughput, combinatorial synthesis of multimetallic nanoclusters

This paper is made freely available by the publisher.
This paper is made freely available by the publisher.

Full text: Download

Red circle
Preprint: archiving forbidden
Green circle
Postprint: archiving allowed
Red circle
Published version: archiving forbidden
Data provided by SHERPA/RoMEO

Abstract

Significance Multielement nanomaterials hold great promise for various applications due to their widely tunable surface chemistry, yet it remains challenging to efficiently study this multidimensional space. Conventional approaches are typically slow and depend on serendipity, while a robust and general synthesis is still lacking among increasingly complex compositions. We report a high-throughput technique for combinatorial compositional design (formulation in solution phases) and rapid synthesis (within seconds) of ultrafine multimetallic nanoclusters with a homogeneous alloy structure. We synthesized and screened the PtPdRhRuIrFeCoNi compositional space using scanning droplet cell electrochemistry, with two promising catalysts quickly identified and further verified in a rotating disk setup. The reported high-throughput approach establishes a facile and reliable pipeline to significantly accelerate material discovery in multimetallic nanomaterials.