Published in

IOP Publishing, 2D Materials, 3(7), p. 031003, 2020

DOI: 10.1088/2053-1583/ab8543

Links

Tools

Export citation

Search in Google Scholar

Intentional carbon doping reveals CH as an abundant charged impurity in nominally undoped synthetic WS<sub>2</sub> and WSe<sub>2</sub>

This paper is made freely available by the publisher.
This paper is made freely available by the publisher.

Full text: Download

Red circle
Preprint: archiving forbidden
Red circle
Postprint: archiving forbidden
Red circle
Published version: archiving forbidden
Data provided by SHERPA/RoMEO

Abstract

Abstract Understanding the physical properties and controlling the generation of intrinsic and extrinsic defects is central to the technological adoption of 2D materials in devices. Here we identify a charged carbon-hydrogen complex at a chalcogen site (CHX) as a common, charged impurity in synthetically grown transition metal dichalcogenides (TMDs). This conclusion is drawn by comparing high resolution scanning probe microscopy measurements of nominally undoped and intentionally carbon doped TMD samples. While CH impurity densities in undoped CVD-grown WS2 and MOCVD-grown WSe2 can range anywhere from parts per million to parts per thousand, CH densities in the percentage levels were selectively generated by a post-synthetic methane plasma treatment. Our study indicates that methane plasma treatment is a selective and clean method for the controlled introduction of a charged carbon-hydrogen complex at a surface chalcogen site, a defect that is commonly present in synthetic TMDs.