Published in

American Association for the Advancement of Science, Science, 6477(367), p. 573-576, 2020

DOI: 10.1126/science.aax9039

Links

Tools

Export citation

Search in Google Scholar

Engineered symbionts activate honey bee immunity and limit pathogens

This paper was not found in any repository, but could be made available legally by the author.
This paper was not found in any repository, but could be made available legally by the author.

Full text: Unavailable

Green circle
Preprint: archiving allowed
Green circle
Postprint: archiving allowed
Red circle
Published version: archiving forbidden
Data provided by SHERPA/RoMEO

Abstract

Inducing immune bee genes Honey bees are prone to parasitism by the Varroa mite, which is a vector for several bee pathogens. However, honey bees are also host to the symbiotic gut bacterium Snodgrassella alvi. Leonard et al. engineered S. alvi to produce double-stranded RNA (dsRNA)—a stimulus for insect RNA interference defense responses—from a plasmid containing two inverted promoters tagged with a fluorescent label (see the Perspective by Paxton). This dsRNA module can be targeted to interfere with specific bee genes as well as crucial viral and mite genes. The authors found that gene expression could be blocked for at least 15 days as the symbionts established in the bees' guts and continuously expressed the dsRNA constructs. S. alvi with specifically targeted plasmids not only suppressed infection with deformed wing virus but also effectively reduced Varroa mite survival. Science , this issue p. 573 ; see also p. 504