Published in

arXiv, 2020

DOI: 10.48550/arxiv.2003.07371

Nature Research, Nature Astronomy, 7(4), p. 690-696, 2020

DOI: 10.1038/s41550-020-1037-z

Links

Tools

Export citation

Search in Google Scholar

A pulsating white dwarf in an eclipsing binary

This paper is made freely available by the publisher.
This paper is made freely available by the publisher.

Full text: Download

Question mark in circle
Preprint: policy unknown
Question mark in circle
Postprint: policy unknown
Question mark in circle
Published version: policy unknown

Abstract

White dwarfs are the burnt out cores of Sun-like stars and are the final fate of 97% of all stars in our Galaxy. The internal structure and composition of white dwarfs are hidden by their high gravities, which causes all elements, apart from the lightest ones, to settle out of their atmospheres. The most direct method to probe the inner structure of stars and white dwarfs in detail is via asteroseismology. Here we present the first known pulsating white dwarf in an eclipsing binary system, enabling us to place extremely precise constraints on the mass and radius of the white dwarf from the light curve, independent of the pulsations. This 0.325M$_⊙$ white dwarf --- one member of SDSS J115219.99+024814.4 --- will serve as a powerful benchmark to constrain empirically the core composition of low-mass stellar remnants and investigate the effects of close binary evolution on the internal structure of white dwarfs.