Published in

Hans Publishers, Astronomy & Astrophysics, (634), p. A37, 2020

DOI: 10.1051/0004-6361/201936684

Links

Tools

Export citation

Search in Google Scholar

Determining the 56Ni distribution of type Ia supernovae from observations within days of explosion

This paper is made freely available by the publisher.
This paper is made freely available by the publisher.

Full text: Download

Red circle
Preprint: archiving forbidden
Red circle
Postprint: archiving forbidden
Red circle
Published version: archiving forbidden
Data provided by SHERPA/RoMEO

Abstract

Recent studies have shown how the distribution of 56Ni within the ejected material of type Ia supernovae can have profound consequences on the observed light curves. Observations at early times can therefore provide important details on the explosion physics in thermonuclear supernovae, which are poorly constrained. To this end, we present a series of radiative transfer calculations that explore variations in the 56Ni distribution. Our models also show the importance of the density profile in shaping the light curve, which is often neglected in the literature. Using our model set, we investigate the observations that are necessary to determine the 56Ni distribution as robustly as possible within the current model set. We find that this includes observations beginning at least ∼14 days before B-band maximum, extending to approximately maximum light with a relatively high (≲3 day) cadence, and in at least one blue and one red band (such as B and R, or g and r) are required. We compare a number of well-observed type Ia supernovae that meet these criteria to our models and find that the light curves of ∼70–80% of objects in our sample are consistent with being produced solely by variations in the 56Ni distributions. The remaining supernovae show an excess of flux at early times, indicating missing physics that is not accounted for within our model set, such as an interaction or the presence of short-lived radioactive isotopes. Comparing our model light curves and spectra to observations and delayed detonation models demonstrates that while a somewhat extended 56Ni distribution is necessary to reproduce the observed light curve shape, this does not negatively affect the spectra at maximum light. Investigating current explosion models shows that observations typically require a shallower decrease in the 56Ni mass towards the outer ejecta than is produced for models of a given 56Ni mass. Future models that test differences in the explosion physics and detonation criteria should be explored to determine the conditions necessary to reproduce the 56Ni distributions found here.