Published in

Oxford University Press (OUP), Monthly Notices of the Royal Astronomical Society, 2(493), p. 2793-2804, 2020

DOI: 10.1093/mnras/staa453

Links

Tools

Export citation

Search in Google Scholar

Unveiling the monster heart: unbeamed properties of blazar 4C 71.07

This paper was not found in any repository, but could be made available legally by the author.
This paper was not found in any repository, but could be made available legally by the author.

Full text: Unavailable

Green circle
Preprint: archiving allowed
Green circle
Postprint: archiving allowed
Green circle
Published version: archiving allowed
Data provided by SHERPA/RoMEO

Abstract

ABSTRACT 4C 71.07 is a high-redshift blazar whose optical radiation is dominated by quasar-like nuclear emission. We here present the results of a spectroscopic monitoring of the source to study its unbeamed properties. We obtained 24 optical spectra at the Nordic Optical Telescope and William Herschel Telescope and 3 near-infrared spectra at the Telescopio Nazionale Galileo. They show no evidence of narrow emission lines. The estimate of the systemic redshift from the Hβ and Hα broad emission lines leads to zsys = 2.2130 ± 0.0004. Notwithstanding the nearly face-on orientation of the accretion disc, the high-ionization emission lines present large broadening as well as noticeable blueshifts, which increase with the ionizing energy of the corresponding species. This is a clear indication of strong ionized outflows. Line broadening and blueshift appear correlated. We applied scaling relationships to estimate the mass of the supermassive black hole from the Balmer and C iv lines, taking into account the prescriptions to correct for outflow. They give $M_{\rm BH} ∼ 2 \times 10^9 \, M_⊙$. We derived an Eddington luminosity $L_{\rm Edd} ∼ 2.5 \times 10^{47} \rm \, erg \, s^{-1}$ ∼ Ldisc, and a broad-line region (BLR) luminosity of $L_{\rm BLR} ∼ 1.5 \times 10^{46} \rm \, erg \, s^{-1}$. The line fluxes do not show significant variability in time. In particular, there is no line reaction to the jet flaring activity detected in 2015 October and November. This implies that the jet gives no contribution to the photoionization of the BLR in the considered period.