Published in

Nature Research, Scientific Reports, 1(9), 2019

DOI: 10.1038/s41598-019-39040-5

Links

Tools

Export citation

Search in Google Scholar

Removing the no-analogue bias in modern accelerated tree growth leads to stronger medieval drought

This paper is made freely available by the publisher.
This paper is made freely available by the publisher.

Full text: Download

Green circle
Preprint: archiving allowed
Red circle
Postprint: archiving forbidden
Green circle
Published version: archiving allowed
Data provided by SHERPA/RoMEO

Abstract

AbstractIn many parts of the world, especially in the temperate regions of Europe and North-America, accelerated tree growth rates have been observed over the last decades. This widespread phenomenon is presumably caused by a combination of factors like atmospheric fertilization or changes in forest structure and/or management. If not properly acknowledged in the calibration of tree-ring based climate reconstructions, considerable bias concerning amplitudes and trends of reconstructed climatic parameters might emerge or low frequency information is lost. Here we present a simple but effective, data-driven approach to remove the recent non-climatic growth increase in tree-ring data. Accounting for the no-analogue calibration problem, a new hydroclimatic reconstruction for northern-central Europe revealed considerably drier conditions during the medieval climate anomaly (MCA) compared with standard reconstruction methods and other existing reconstructions. This demonstrates the necessity to account for fertilization effects in modern tree-ring data from affected regions before calibrating reconstruction models, to avoid biased results.