Published in

MDPI, Nanomaterials, 2(10), p. 298, 2020

DOI: 10.3390/nano10020298

Links

Tools

Export citation

Search in Google Scholar

Multifunctional, CD44v6-Targeted ORMOSIL Nanoparticles Enhance Drugs Toxicity in Cancer Cells

This paper is made freely available by the publisher.
This paper is made freely available by the publisher.

Full text: Download

Green circle
Preprint: archiving allowed
Green circle
Postprint: archiving allowed
Green circle
Published version: archiving allowed
Data provided by SHERPA/RoMEO

Abstract

Drug-loaded, PEGylated, organic-modified silica (ORMOSIL) nanoparticles prepared by microemulsion condensation of vinyltriethoxysilane (VTES) were investigated as potential nanovectors for cancer therapy. To target cancer stem cells, anti-CD44v6 antibody and hyaluronic acid (HA) were conjugated to amine-functionalized PEGylated ORMOSIL nanoparticles through thiol-maleimide and amide coupling chemistries, respectively. Specific binding and uptake of conjugated nanoparticles were studied on cells overexpressing the CD44v6 receptor. Cytotoxicity was subsequently evaluated in the same cells after the uptake of the nanoparticles. Internalization of nanocarriers loaded with the anticancer drug 3N-cyclopropylmethyl-7-phenyl-pyrrolo- quinolinone (MG2477) into cells resulted in a substantial increase of the cytotoxicity with respect to the free formulation. Targeting with anti-CD44v6 antibodies or HA yielded nanoparticles with similar effectiveness, in their optimized formulation.