Published in

Nature Research, Scientific Reports, 1(9), 2019

DOI: 10.1038/s41598-019-43899-9

Links

Tools

Export citation

Search in Google Scholar

Th1, Th17, and Treg Responses are Differently Modulated by TNF-α Inhibitors and Methotrexate in Psoriasis Patients

This paper is made freely available by the publisher.
This paper is made freely available by the publisher.

Full text: Download

Green circle
Preprint: archiving allowed
Red circle
Postprint: archiving forbidden
Green circle
Published version: archiving allowed
Data provided by SHERPA/RoMEO

Abstract

AbstractPsoriasis is a chronic, recurrent, immune-mediated, hyperproliferative inflammatory skin disease. The role of the adaptive immune system, particularly of Th1 and Th17 lymphocytes, has been regarded as prominent in the immunopathogenesis of psoriasis, as well as decreased Tregs function. Immunobiological drugs were administered in therapeutic pulses and a few studies evaluate their effects on the immune repertoire. The aim of this study was to evaluate the adaptive immune profile of patients with severe psoriasis under immunobiological treatment in two time points. Thirty-two psoriasis patients and 10 control patients were evaluated. In the group of psoriasis patients, 10 patients were on anti-TNF and 14 patients on methotrexate treatment, while 8 individuals were not treated. IL-17, IFN-γ, TNF-α, IL-6, IL-2, and IL-10 were analyzed. CD4 T cell intracellular cytokines were analyzed. It was observed that stimulation could significantly increase the production of IL-17, IFN-γ, TNF-α, and IL-10 only before anti-TNF pulse therapy. The activation of Th1 and Treg cells after stimulation was significantly higher before anti-TNF pulse. Patients on methotrexate or anti-TNF therapy produced significantly lower levels of TNF-α, IL-10, and IL-6. Furthermore, these patients showed a significant decrease in the activated CD4+ T cells. The treatment with immunomodulator or methotrexate modulates the activation of CD4+ T cells, and anti-TNF treatment appears to have a modulating effect on the activation and production of Th1, Th17, and Treg cells.