Published in

Nature Research, Communications Chemistry, 1(3), 2020

DOI: 10.1038/s42004-020-0265-6

Links

Tools

Export citation

Search in Google Scholar

Structure and optical properties of perovskite-embedded dual-phase microcrystals synthesized by sonochemistry

Journal article published in 2020 by Sangyeon Cho ORCID, Seok Hyun Yun ORCID
This paper is made freely available by the publisher.
This paper is made freely available by the publisher.

Full text: Download

Green circle
Preprint: archiving allowed
Red circle
Postprint: archiving forbidden
Green circle
Published version: archiving allowed
Data provided by SHERPA/RoMEO

Abstract

AbstractCesium lead halide perovskite (CsPbX3, X=Cl, Br, I) nanocrystals embedded in Cs4PbX6 or CsPb2X5 matrices have received interests due to their excellent optical properties. However, their precise endotaxial structures are not known, and the origin of photoluminescence remains controversial. Here we report a sonochemistry technique that allowed us to synthesize high-quality CsPbBr3-based microcrystals in all ternary phases, simply by adjusting precursor concentrations in a polar aprotic solvent, N,N-dimethylformamide. The microcrystals with diverse morphologies enabled us to visualize the lattice alignments in the dual-phase composites and confirm CsPbBr3 nanocrystals being the photoluminescent sites. We demonstrate high solid-state quantum yield of >40% in Cs4PbBr6/CsPbBr3 and lasing of CsPbBr3 microcrystals as small as 2 µm in size. Real-time optical analysis of the reaction solutions provides insights into the formation and phase transformation of different CsPbBr3-based microcrystals.