Published in

2019 International Conference on Internet of Things (iThings) and IEEE Green Computing and Communications (GreenCom) and IEEE Cyber, Physical and Social Computing (CPSCom) and IEEE Smart Data (SmartData), 2019

DOI: 10.1109/ithings/greencom/cpscom/smartdata.2019.00109

SpringerOpen, EURASIP Journal on Wireless Communications and Networking, 1(2020), 2020

DOI: 10.1186/s13638-020-1643-6

Links

Tools

Export citation

Search in Google Scholar

Energy-efficient privacy-preserving data aggregation protocols based on slicing

Journal article published in 2019 by Xiaowu Liu, Xiaowei Zhang, Jiguo Yu, Na Dang, Xiaohan Qi, Qiang Zhang, Can Fu
This paper is made freely available by the publisher.
This paper is made freely available by the publisher.

Full text: Download

Green circle
Preprint: archiving allowed
Green circle
Postprint: archiving allowed
Red circle
Published version: archiving forbidden
Data provided by SHERPA/RoMEO

Abstract

AbstractWireless sensor networks (WSNs) have become one of the most vigorous techniques in the network domain. However, the sensor nodes of WSNs tend to become the target of attackers due to the broadcast communication mode and the unattended deployment nature. Although it can prevent the sensitive data from being compromised, Slice-Mix-AggRegaTe (SMART) needs to exchange messages frequently in a network, which put tremendous overhead on the sensor nodes with limited resources. Faced with these issues, this paper proposes an energy-efficient privacy-preserving data aggregation protocol based on slicing (EPPA) where a novel slicing mode is adopted to reduce the numbers of slices, which can significantly prevent the data from being compromised and decrease the communication overhead. Meanwhile, an enhanced scheme based on EPPA, called multi-function privacy-preserving data aggregation protocol (MPPA), is presented and it supports multiple functions in the process of data aggregation, such as max/min, count, and mean. The theoretical analysis and the simulation evaluation show that the proposed aggregation protocols demonstrate a better performance in the privacy preserving and the communication efficiency.