Published in

Cambridge University Press, Publications of the Astronomical Society of Australia, (35), 2018

DOI: 10.1017/pasa.2018.34

Links

Tools

Export citation

Search in Google Scholar

Observing merger trees in a new light

This paper was not found in any repository, but could be made available legally by the author.
This paper was not found in any repository, but could be made available legally by the author.

Full text: Unavailable

Green circle
Preprint: archiving allowed
Orange circle
Postprint: archiving restricted
Red circle
Published version: archiving forbidden
Data provided by SHERPA/RoMEO

Abstract

AbstractMerger trees harvested from cosmologicalN-body simulations encode the assembly histories of dark matter halos over cosmic time and are a fundamental component of semi-analytical models of galaxy formation. The ability to compare the tools used to construct merger trees, namely halo finders and tree building algorithms, in an unbiased and systematic manner is critical to assess the quality of merger trees. In this paper, we present the dendrogram, a novel method to visualise merger trees, which provides a comprehensive characterisation of a halo’s assembly history—tracking subhalo orbits, halo merger events, and the general evolution of halo properties. We show the usefulness of thedendrogramas a diagnostic tool of merger trees by comparing halo assembly simulation analysed with three different halo finders—VELOCIraptor, AHF, and Rockstar—and their associated tree builders. Based on our analysis of the resulting dendrograms, we highlight how they have been used to motivate improvements to VELOCIraptor. Thedendrogramsoftware is publicly available online, at:https://github.com/rhyspoulton/MergerTree-Dendrograms.