Published in

Wiley, Monthly Notice- Royal Astronomical Society -Letters-, 1(492), p. L61-L65, 2019

DOI: 10.1093/mnrasl/slz167

Links

Tools

Export citation

Search in Google Scholar

Chemodynamical properties of the Anticentre Stream: a surviving disc fossil from a past satellite interaction

Distributing this paper is prohibited by the publisher
Distributing this paper is prohibited by the publisher

Full text: Unavailable

Red circle
Preprint: archiving forbidden
Orange circle
Postprint: archiving restricted
Red circle
Published version: archiving forbidden
Data provided by SHERPA/RoMEO

Abstract

ABSTRACT Using Gaia second data release (DR2), we trace the Anticentre Stream (ACS) in various stellar populations across the sky and find that it is kinematically and spatially decoupled from the Monoceros Ring. Using stars from lamost and segue, we show that the ACS is systematically more metal-poor than Monoceros by 0.1 dex with indications of a narrower metallicity spread. Furthermore, the ACS is predominantly populated of old stars ($∼ 10\, \rm {Gyr}$), whereas Monoceros has a pronounced tail of younger stars ($6-10\, \rm {Gyr}$) as revealed by their cumulative age distributions. Put together, all of this evidence support predictions from simulations of the interaction of the Sagittarius dwarf with the Milky Way, which argue that the ACS is the remains of a tidal tail of the Galaxy excited during Sgr’s first pericentric passage after it crossed the virial radius, whereas Monoceros consists of the composite stellar populations excited during the more extended phases of the interaction. Importantly, the ACS can be viewed as a stand-alone fossil of the chemical enrichment history of the Galactic disc.