Published in

Apollo - University of Cambridge Repository, 2019

DOI: 10.17863/cam.45273

Oxford University Press (OUP), Bioinformatics, 2019

DOI: 10.1093/bioinformatics/btz778

Links

Tools

Export citation

Search in Google Scholar

GPseudoClust: deconvolution of shared pseudo-profiles at single-cell resolution

Journal article published in 2019 by Magdalena E. Strauss, Paul D. W. Kirk ORCID, John E. Reid, Lorenz Wernisch
This paper was not found in any repository, but could be made available legally by the author.
This paper was not found in any repository, but could be made available legally by the author.

Full text: Unavailable

Question mark in circle
Preprint: policy unknown
Question mark in circle
Postprint: policy unknown
Question mark in circle
Published version: policy unknown

Abstract

Abstract Motivation Many methods have been developed to cluster genes on the basis of their changes in mRNA expression over time, using bulk RNA-seq or microarray data. However, single-cell data may present a particular challenge for these algorithms, since the temporal ordering of cells is not directly observed. One way to address this is to first use pseudotime methods to order the cells, and then apply clustering techniques for time course data. However, pseudotime estimates are subject to high levels of uncertainty, and failing to account for this uncertainty is liable to lead to erroneous and/or over-confident gene clusters. Results The proposed method, GPseudoClust, is a novel approach that jointly infers pseudotemporal ordering and gene clusters, and quantifies the uncertainty in both. GPseudoClust combines a recent method for pseudotime inference with nonparametric Bayesian clustering methods, efficient MCMC sampling, and novel subsampling strategies which aid computation.We consider a broad array of simulated and experimental datasets to demonstrate the effectiveness of GPseudoClust in a range of settings. Availability An implementation is available on GitHub: https://github.com/magStra/nonparametricSummaryPSM and https://github.com/magStra/GPseudoClust. Supplementary Information Supplementary data are available at Bioinformatics online.