Published in

Springer, Solar Physics, 9(294), 2019

DOI: 10.1007/s11207-019-1515-6

Links

Tools

Export citation

Search in Google Scholar

CME–HSS Interaction and Characteristics Tracked from Sun to Earth

This paper is made freely available by the publisher.
This paper is made freely available by the publisher.

Full text: Download

Green circle
Preprint: archiving allowed
Orange circle
Postprint: archiving restricted
Red circle
Published version: archiving forbidden
Data provided by SHERPA/RoMEO

Abstract

Abstract In a thorough study, we investigate the origin of a remarkable plasma and magnetic field configuration observed in situ on June 22, 2011, near L1, which appears to be a magnetic ejecta (ME) and a shock signature engulfed by a solar wind high-speed stream (HSS). We identify the signatures as an Earth-directed coronal mass ejection (CME), associated with a C7.7 flare on June 21, 2011, and its interaction with a HSS, which emanates from a coronal hole (CH) close to the launch site of the CME. The results indicate that the major interaction between the CME and the HSS starts at a height of $1.3~\mbox{R}_{⊙ }$ 1.3 R ⊙ up to $3~\mbox{R}_{⊙ }$ 3 R ⊙ . Over that distance range, the CME undergoes a strong north-eastward deflection of at least $30^{∘ }$ 30 ∘ due to the open magnetic field configuration of the CH. We perform a comprehensive analysis for the CME–HSS event using multi-viewpoint data (from the Solar TErrestrial RElations Observatories, the Solar and Heliospheric Observatory and the Solar Dynamics Observatory), and combined modeling efforts (nonlinear force-free field modeling, Graduated Cylindrical Shell CME modeling, and the Forecasting a CME’s Altered Trajectory – ForeCAT model). We aim at better understanding its early evolution and interaction process as well as its interplanetary propagation and related in situ signatures, and finally the resulting impact on the Earth’s magnetosphere.