Published in

Oxford University Press (OUP), Monthly Notices of the Royal Astronomical Society, 4(489), p. 5530-5546, 2019

DOI: 10.1093/mnras/stz2455

Links

Tools

Export citation

Search in Google Scholar

SIGNALS: I. Survey description

This paper was not found in any repository, but could be made available legally by the author.
This paper was not found in any repository, but could be made available legally by the author.

Full text: Unavailable

Green circle
Preprint: archiving allowed
Green circle
Postprint: archiving allowed
Green circle
Published version: archiving allowed
Data provided by SHERPA/RoMEO

Abstract

ABSTRACT SIGNALS, the Star formation, Ionized Gas, and Nebular Abundances Legacy Survey, is a large observing programme designed to investigate massive star formation and H ii regions in a sample of local extended galaxies. The programme will use the imaging Fourier transform spectrograph SITELLE at the Canada–France–Hawaii Telescope. Over 355 h (54.7 nights) have been allocated beginning in fall 2018 for eight consecutive semesters. Once completed, SIGNALS will provide a statistically reliable laboratory to investigate massive star formation, including over 50 000 resolved H ii regions: the largest, most complete, and homogeneous data base of spectroscopically and spatially resolved extragalactic H ii regions ever assembled. For each field observed, three datacubes covering the spectral bands of the filters SN1 (363–386 nm), SN2 (482–513 nm), and SN3 (647–685 nm) are gathered. The spectral resolution selected for each spectral band is 1000, 1000, and 5000, respectively. As defined, the project sample will facilitate the study of small-scale nebular physics and many other phenomena linked to star formation at a mean spatial resolution of ∼20 pc. This survey also has considerable legacy value for additional topics, including planetary nebulae, diffuse ionized gas, and supernova remnants. The purpose of this paper is to present a general outlook of the survey, notably the observing strategy, galaxy sample, and science requirements.