Published in

MDPI, Molecules, 11(24), p. 2144, 2019

DOI: 10.3390/molecules24112144

Links

Tools

Export citation

Search in Google Scholar

Mixed Two-Dimensional Organic-Inorganic Halide Perovskites for Highly Efficient and Stable Photovoltaic Application

Journal article published in 2019 by Jia-Yi Dong, Zi-Qian Ma, Ye Yang, Shuang-Peng Wang ORCID, Hui Pan
This paper is made freely available by the publisher.
This paper is made freely available by the publisher.

Full text: Download

Green circle
Preprint: archiving allowed
Green circle
Postprint: archiving allowed
Green circle
Published version: archiving allowed
Data provided by SHERPA/RoMEO

Abstract

Solar cells made of hybrid organic-inorganic perovskite (HOIP) materials have attracted ever-increasing attention due to their high efficiency and easy fabrication. However, issues regarding their poor stability remain a challenge for practical applications. Engineering the composition and structure of HOIP can effectively enhance the thermal stability and improve the power conversion efficiency (PCE). In this work, mixed two-dimensional (2D) HOIPs are systematically investigated for solar-power harvesting using first-principles calculations. We find that their electronic properties depend strongly on the mixed atoms (Cs, Rb, Ge and Pb) and the formation energy is related to the HOIP’s composition, where the atoms are more easily mixed in SnI-2D-HOIPs due to low formation energy at the same composition ratio. We further show that optimal solar energy harvesting can be achieved on the solar cells composed of mixed SnI-2D-HOIPs because of reduced bandgaps, enhanced mobility and improved stability. Importantly, we find that the mixed atoms (Cs, Rb, Ge and Pb) with the appropriate composition ratios can effectively enhance the solar-to-power efficiency and show greatly improved resistance to moisture. The findings demonstrate that mixed 2D-HOIPs can replace the bulk HOIPs or pure 2D-HOIPs for applications into solar cells with high efficiency and stability.