Published in

Wiley, Monthly Notice- Royal Astronomical Society -Letters-, 1(488), p. L129-L133, 2019

DOI: 10.1093/mnrasl/slz113

Links

Tools

Export citation

Search in Google Scholar

An H i absorption distance to the black hole candidate X-ray binary MAXI J1535–571

This paper was not found in any repository, but could be made available legally by the author.
This paper was not found in any repository, but could be made available legally by the author.

Full text: Unavailable

Red circle
Preprint: archiving forbidden
Orange circle
Postprint: archiving restricted
Red circle
Published version: archiving forbidden
Data provided by SHERPA/RoMEO

Abstract

ABSTRACT With the Australian Square Kilometre Array Pathfinder (ASKAP) we monitored the black hole candidate X-ray binary MAXI J1535–571 over seven epochs from 2017 September 21 to October 2. Using ASKAP observations, we studied the H i absorption spectrum from gas clouds along the line of sight and thereby constrained the distance to the source. The maximum negative radial velocities measured from the H i absorption spectra for MAXI J1535–571 and an extragalactic source in the same field of view are −69 ± 4 and −89 ± 4 km s−1, respectively. This rules out the far kinematic distance ($9.3^{+0.5}_{-0.6}$ kpc), giving a most likely distance of $4.1^{+0.6}_{-0.5}$ kpc, with a strong upper limit of the tangent point at $6.7^{+0.1}_{-0.2}$ kpc. At our preferred distance, the peak unabsorbed luminosity of MAXI J1535–571 was >78 per cent of the Eddington luminosity, and shows that the soft-to-hard spectral state transition occurred at the very low luminosity of (1.2–3.4) × 10−5 times the Eddington luminosity. Finally, this study highlights the capabilities of new wide-field radio telescopes to probe Galactic transient outbursts, by allowing us to observe both a target source and a background comparison source in a single telescope pointing.