Published in

Nature Research, Scientific Reports, 1(9), 2019

DOI: 10.1038/s41598-019-45216-w

Links

Tools

Export citation

Search in Google Scholar

Microevolution of antimicrobial resistance and biofilm formation of Salmonella Typhimurium during persistence on pig farms

This paper is made freely available by the publisher.
This paper is made freely available by the publisher.

Full text: Download

Green circle
Preprint: archiving allowed
Red circle
Postprint: archiving forbidden
Green circle
Published version: archiving allowed
Data provided by SHERPA/RoMEO

Abstract

AbstractSalmonella Typhimurium and its monophasic variant S. 4,[5],12:i:- are the dominant serotypes associated with pigs in many countries. We investigated their population structure on nine farms using whole genome sequencing, and their genotypic and phenotypic variation. The population structure revealed the presence of phylogenetically distinct clades consisting of closely related clones of S. Typhimurium or S. 4,[5],12:i:- on each pig farm, that persisted between production cycles. All the S. 4,[5],12:i:- strains carried the Salmonella genomic island-4 (SGI-4), which confers resistance to heavy metals, and half of the strains contained the mTmV prophage, harbouring the sopE virulence gene. Most clonal groups were highly drug resistant due to the presence of multiple antimicrobial resistance (AMR) genes, and two clades exhibited evidence of recent on-farm plasmid-mediated acquisition of additional AMR genes, including an IncHI2 plasmid. Biofilm formation was highly variable but had a strong phylogenetic signature. Strains capable of forming biofilm with the greatest biomass were from the S. 4,[5],12:i:- and S. Typhimurium DT104 clades, the two dominant pandemic clones found over the last 25 years. On-farm microevolution resulted in enhanced biofilm formation in subsequent production cycle.