Published in

MDPI, Agronomy, 8(9), p. 437, 2019

DOI: 10.3390/agronomy9080437

Links

Tools

Export citation

Search in Google Scholar

A Precision Agriculture Approach for Durum Wheat Yield Assessment Using Remote Sensing Data and Yield Mapping

This paper is made freely available by the publisher.
This paper is made freely available by the publisher.

Full text: Download

Green circle
Preprint: archiving allowed
Green circle
Postprint: archiving allowed
Green circle
Published version: archiving allowed
Data provided by SHERPA/RoMEO

Abstract

The availability of big data in agriculture, enhanced by free remote sensing data and on-board sensor-based data, provides an opportunity to understand within-field and year-to-year variability and promote precision farming practices for site-specific management. This paper explores the performance in durum wheat yield estimation using different technologies and data processing methods. A state-of-the-art data cleaning technique has been applied to data from a yield monitoring system, giving a good agreement between yield monitoring data and hand sampled data. The potential use of Sentinel-2 and Landsat-8 images in precision agriculture for within-field production variability is then assessed, and the optimal time for remote sensing to relate to durum wheat yield is also explored. Comparison of the Normalized Difference Vegetation Index(NDVI) with yield monitoring data reveals significant and highly positive linear relationships (r ranging from 0.54 to 0.74) explaining most within-field variability for all the images acquired between March and April. Remote sensing data analyzed with these methods could be used to assess durum wheat yield and above all to depict spatial variability in order to adopt site-specific management and improve productivity, save time and provide a potential alternative to traditional farming practices.