Published in

American Association of Immunologists, The Journal of Immunology, 12(202), p. 3483-3492, 2019

DOI: 10.4049/jimmunol.1801369

Links

Tools

Export citation

Search in Google Scholar

SIDT1 Localizes to Endolysosomes and Mediates Double-Stranded RNA Transport into the Cytoplasm

This paper is made freely available by the publisher.
This paper is made freely available by the publisher.

Full text: Download

Green circle
Preprint: archiving allowed
Red circle
Postprint: archiving forbidden
Red circle
Published version: archiving forbidden
Data provided by SHERPA/RoMEO

Abstract

Abstract dsRNA is a common by-product of viral replication and acts as a potent trigger of antiviral immunity. SIDT1 and SIDT2 are closely related members of the SID-1 transmembrane family. SIDT2 functions as a dsRNA transporter and is required to traffic internalized dsRNA from endocytic compartments into the cytosol for innate immune activation, but the role of SIDT1 in dsRNA transport and in the innate immune response to viral infection is unclear. In this study, we show that Sidt1 expression is upregulated in response to dsRNA and type I IFN exposure and that SIDT1 interacts with SIDT2. Moreover, similar to SIDT2, SIDT1 localizes to the endolysosomal compartment, interacts with the long dsRNA analog poly(I:C), and, when overexpressed, enhances endosomal escape of poly(I:C) in vitro. To elucidate the role of SIDT1 in vivo, we generated SIDT1-deficient mice. Similar to Sidt2−/− mice, SIDT1-deficient mice produced significantly less type I IFN following infection with HSV type 1. In contrast to Sidt2−/− mice, however, SIDT1-deficient animals showed no impairment in survival postinfection with either HSV type 1 or encephalomyocarditis virus. Consistent with this, we observed that, unlike SIDT2, tissue expression of SIDT1 was relatively restricted, suggesting that, whereas SIDT1 can transport extracellular dsRNA into the cytoplasm following endocytosis in vitro, the transport activity of SIDT2 is likely to be functionally dominant in vivo.