Published in

Copernicus Publications, International Archives of the Photogrammetry, Remote Sensing and Spatial Information Sciences, (XLII-3/W4), p. 445-452, 2018

DOI: 10.5194/isprs-archives-xlii-3-w4-445-2018

Links

Tools

Export citation

Search in Google Scholar

Integration of Terrestrial and Uav Photogrammetry for the Assessment of Collapse Risk in Alpine Glaciers

This paper was not found in any repository; the policy of its publisher is unknown or unclear.
This paper was not found in any repository; the policy of its publisher is unknown or unclear.

Full text: Unavailable

Green circle
Preprint: archiving allowed
Green circle
Postprint: archiving allowed
Green circle
Published version: archiving allowed
Data provided by SHERPA/RoMEO

Abstract

Abstract. The application of Structure-from-Motion photogrammetry with ground-based and UAV-based camera stations can be effectively exploited for modeling the topographic surface of Alpine glaciers. Multi-temporal repeated surveys may lead to geometric models that may be applied to analyze the glacier retreat under global warming conditions. Here the case study of Forni Glacier in the Italian Alps is presented. Thanks to the integration of point clouds obtained from the independent photogrammetric processing of ground-based and UAV blocks of images (captured on 2016), a complete 3D reconstruction also including vertical and sub-vertical surfaces has been achieved. This 3D model, compared to a second model obtained from a ground-based photogrammetric survey on September 2017, has been exploited to understand the precursory signal of a big collapse that might have involved tourists and hikers visiting the glacier ice tongue during summer. In addition to some technical aspects related to the acquisition and processing of photogrammetric data of glaciers, this paper highlights how Structure-from-Motion photogrammetry may help evaluate the risk of collapse in Alpine glaciers.