Published in

American Association for the Advancement of Science, Science, 6410(362), 2018

DOI: 10.1126/science.aat3185

Links

Tools

Export citation

Search in Google Scholar

In situ collection of dust grains falling from Saturn’s rings into its atmosphere

This paper was not found in any repository, but could be made available legally by the author.
This paper was not found in any repository, but could be made available legally by the author.

Full text: Unavailable

Green circle
Preprint: archiving allowed
Green circle
Postprint: archiving allowed
Red circle
Published version: archiving forbidden
Data provided by SHERPA/RoMEO

Abstract

Cassini's final phase of exploration The Cassini spacecraft spent 13 years orbiting Saturn; as it ran low on fuel, the trajectory was changed to sample regions it had not yet visited. A series of orbits close to the rings was followed by a Grand Finale orbit, which took the spacecraft through the gap between Saturn and its rings before the spacecraft was destroyed when it entered the planet's upper atmosphere. Six papers in this issue report results from these final phases of the Cassini mission. Dougherty et al. measured the magnetic field close to Saturn, which implies a complex multilayer dynamo process inside the planet. Roussos et al. detected an additional radiation belt trapped within the rings, sustained by the radioactive decay of free neutrons. Lamy et al. present plasma measurements taken as Cassini flew through regions emitting kilometric radiation, connected to the planet's aurorae. Hsu et al. determined the composition of large, solid dust particles falling from the rings into the planet, whereas Mitchell et al. investigated the smaller dust nanograins and show how they interact with the planet's upper atmosphere. Finally, Waite et al. identified molecules in the infalling material and directly measured the composition of Saturn's atmosphere. Science , this issue p. eaat5434 , p. eaat1962 , p. eaat2027 , p. eaat3185 , p. eaat2236 , p. eaat2382