Published in

Nature Research, Scientific Reports, 1(9), 2019

DOI: 10.1038/s41598-019-40948-1

Links

Tools

Export citation

Search in Google Scholar

1,8-diiodooctane acts as a photo-acid in organic solar cells

This paper is made freely available by the publisher.
This paper is made freely available by the publisher.

Full text: Download

Green circle
Preprint: archiving allowed
Red circle
Postprint: archiving forbidden
Green circle
Published version: archiving allowed
Data provided by SHERPA/RoMEO

Abstract

AbstractThe last decade saw myriad new donor polymers, among which benzodithiophene-co-thienothiophene polymers are attractive due to their relatively high power conversion efficiency in bulk heterojunction solar cells. We examine the effect of UV-light on the stability of these polymers. The relationship between the polymer chemical structure and the UV-stability of the cells is explored on the one hand, and on the other hand, the effect of additives on their UV-stability: 1,8-diiodooctane against 1-chloronaphthalene in the cells and 1,8-octanedithiol in solution. For example, PBDTTT-E with 18% efficiency loss is more stable than PBDTTT-ET with 36% loss throughout the exposure. While 1,8-diiodooctane acts as photo-acid and leads to accelerated degradation of the solar cells, 1-chloronaphthalene does not. Acidity is known to be detrimental to the efficiency and stability of organic solar cells. The degradation is initiated upon UV-irradiation by the cleavage of the side chains, resulting in more electron traps and by the formation of iodine, dissolved HI and carbon-centered radicals from 1,8-diiodooctane as revealed by 1H NMR spectrum. The 1,8-octanedithiol spectra do not show such species. Finally, the mechanisms behind the effect of 1,8-diiodooctane are explained, paving the way for the design of new, efficient as well as stable materials and additives.